SQL is a standard computer language for accessing and manipulating databases.

What is SQL?

· SQL stands for Structured Query Language

· SQL allows you to access a database

· SQL is an ANSI standard computer language

· SQL can execute queries against a database

· SQL can retrieve data from a database

· SQL can insert new records in a database

· SQL can delete records from a database

· SQL can update records in a database

· SQL is easy to learn

SQL is a Standard - BUT....

SQL is an ANSI (American National Standards Institute) standard computer language for accessing and manipulating database systems. SQL statements are used to retrieve and update data in a database. SQL works with database programs like MS Access, DB2, Informix, MS SQL Server, Oracle, Sybase, etc.

Unfortunately, there are many different versions of the SQL language, but to be in compliance with the ANSI standard, they must support the same major keywords in a similar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and others).

Note: Most of the SQL database programs also have their own proprietary extensions in addition to the SQL standard!

SQL Database Tables

A database most often contains one or more tables. Each table is identified by a name (e.g. "Customers" or "Orders"). Tables contain records (rows) with data.

Below is an example of a table called "Persons":

	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

The table above contains three records (one for each person) and four columns (LastName, FirstName, Address, and City).

SQL Queries

With SQL, we can query a database and have a result set returned.

A query like this:

	SELECT LastName FROM Persons

Gives a result set like this:

	LastName

	Hansen

	Svendson

	Pettersen

Note: Some database systems require a semicolon at the end of the SQL statement. We don't use the semicolon in our tutorials.

SQL Data Manipulation Language (DML)

SQL (Structured Query Language) is a syntax for executing queries. But the SQL language also includes a syntax to update, insert, and delete records.

These query and update commands together form the Data Manipulation Language (DML) part of SQL:

· SELECT - extracts data from a database table

· UPDATE - updates data in a database table

· DELETE - deletes data from a database table

· INSERT INTO - inserts new data into a database table

SQL Data Definition Language (DDL)

The Data Definition Language (DDL) part of SQL permits database tables to be created or deleted. We can also define indexes (keys), specify links between tables, and impose constraints between database tables.

The most important DDL statements in SQL are:

· CREATE TABLE - creates a new database table

· ALTER TABLE - alters (changes) a database table

· DROP TABLE - deletes a database table

· CREATE INDEX - creates an index (search key)

· DROP INDEX - deletes an index

SQL SELECT Example

To select the content of columns named "LastName" and "FirstName", from the database table called "Persons", use a SELECT statement like this:

	SELECT LastName,FirstName FROM Persons

The database table "Persons":
	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

The result
	LastName
	FirstName

	Hansen
	Ola

	Svendson
	Tove

	Pettersen
	Kari

Select All Columns

To select all columns from the "Persons" table, use a * symbol instead of column names, like this:

	SELECT * FROM Persons

Result
	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

The Result Set

The result from a SQL query is stored in a result-set. Most database software systems allow navigation of the result set with programming functions, like: Move-To-First-Record, Get-Record-Content, Move-To-Next-Record, etc.

Programming functions like these are not a part of this tutorial. To learn about accessing data with function calls, please visit our ADO tutorial.

Semicolon after SQL Statements?

Semicolon is the standard way to separate each SQL statement in database systems that allow more than one SQL statement to be executed in the same call to the server.

Some SQL tutorials end each SQL statement with a semicolon. Is this necessary? We are using MS Access and SQL Server 2000 and we do not have to put a semicolon after each SQL statement, but some database programs force you to use it.

The SELECT DISTINCT Statement

The DISTINCT keyword is used to return only distinct (different) values.

The SELECT statement returns information from table columns. But what if we only want to select distinct elements?

With SQL, all we need to do is to add a DISTINCT keyword to the SELECT statement:

Syntax

	SELECT DISTINCT column_name(s)

FROM table_name

Using the DISTINCT keyword

To select ALL values from the column named "Company" we use a SELECT statement like this:

	SELECT Company FROM Orders

"Orders" table
	Company
	OrderNumber

	Sega
	3412

	W3Schools
	2312

	Trio
	4678

	W3Schools
	6798

Result
	Company

	Sega

	W3Schools

	Trio

	W3Schools

Note that "W3Schools" is listed twice in the result-set.

To select only DIFFERENT values from the column named "Company" we use a SELECT DISTINCT statement like this:

	SELECT DISTINCT Company FROM Orders

Result:
	Company

	Sega

	W3Schools

	Trio

The WHERE clause is used to specify a selection criterion.

The WHERE Clause

To conditionally select data from a table, a WHERE clause can be added to the SELECT statement.

Syntax

	SELECT column FROM table

WHERE column operator value

With the WHERE clause, the following operators can be used:

	Operator
	Description

	=
	Equal

	<>
	Not equal

	>
	Greater than

	<
	Less than

	>=
	Greater than or equal

	<=
	Less than or equal

	BETWEEN
	Between an inclusive range

	LIKE
	Search for a pattern

	IN
	If you know the exact value you want to return for at least one of the columns

Note: In some versions of SQL the <> operator may be written as !=

Using the WHERE Clause

To select only the persons living in the city "Sandnes", we add a WHERE clause to the SELECT statement:

	SELECT * FROM Persons

WHERE City='Sandnes'

"Persons" table
	LastName
	FirstName
	Address
	City
	Year

	Hansen
	Ola
	Timoteivn 10
	Sandnes
	1951

	Svendson
	Tove
	Borgvn 23
	Sandnes
	1978

	Svendson
	Stale
	Kaivn 18
	Sandnes
	1980

	Pettersen
	Kari
	Storgt 20
	Stavanger
	1960

Result
	LastName
	FirstName
	Address
	City
	Year

	Hansen
	Ola
	Timoteivn 10
	Sandnes
	1951

	Svendson
	Tove
	Borgvn 23
	Sandnes
	1978

	Svendson
	Stale
	Kaivn 18
	Sandnes
	1980

Using Quotes

Note that we have used single quotes around the conditional values in the examples.

SQL uses single quotes around text values (most database systems will also accept double quotes). Numeric values should not be enclosed in quotes.

For text values:

	This is correct:

SELECT * FROM Persons WHERE FirstName='Tove'

This is wrong:

SELECT * FROM Persons WHERE FirstName=Tove

For numeric values:

	This is correct:

SELECT * FROM Persons WHERE Year>1965

This is wrong:

SELECT * FROM Persons WHERE Year>'1965'

The LIKE Condition

The LIKE condition is used to specify a search for a pattern in a column.

Syntax

	SELECT column FROM table

WHERE column LIKE pattern

A "%" sign can be used to define wildcards (missing letters in the pattern) both before and after the pattern.

Using LIKE

The following SQL statement will return persons with first names that start with an 'O':

	SELECT * FROM Persons

WHERE FirstName LIKE 'O%'

The following SQL statement will return persons with first names that end with an 'a':

	SELECT * FROM Persons

WHERE FirstName LIKE '%a'

The following SQL statement will return persons with first names that contain the pattern 'la':

	SELECT * FROM Persons

WHERE FirstName LIKE '%la%'

The INSERT INTO Statement

The INSERT INTO statement is used to insert new rows into a table.

Syntax

	INSERT INTO table_name
VALUES (value1, value2,....)

You can also specify the columns for which you want to insert data:

	INSERT INTO table_name (column1, column2,...)

VALUES (value1, value2,....)

Insert a New Row

This "Persons" table:

	LastName
	FirstName
	Address
	City

	Pettersen
	Kari
	Storgt 20
	Stavanger

And this SQL statement:

	INSERT INTO Persons

VALUES ('Hetland', 'Camilla', 'Hagabakka 24', 'Sandnes')

Will give this result:

	LastName
	FirstName
	Address
	City

	Pettersen
	Kari
	Storgt 20
	Stavanger

	Hetland
	Camilla
	Hagabakka 24
	Sandnes

Insert Data in Specified Columns

This "Persons" table:

	LastName
	FirstName
	Address
	City

	Pettersen
	Kari
	Storgt 20
	Stavanger

	Hetland
	Camilla
	Hagabakka 24
	Sandnes

And This SQL statement:

	INSERT INTO Persons (LastName, Address)

VALUES ('Rasmussen', 'Storgt 67')

Will give this result:

	LastName
	FirstName
	Address
	City

	Pettersen
	Kari
	Storgt 20
	Stavanger

	Hetland
	Camilla
	Hagabakka 24
	Sandnes

	Rasmussen
	
	Storgt 67
	

The Update Statement

The UPDATE statement is used to modify the data in a table.

Syntax

	UPDATE table_name

SET column_name = new_value
WHERE column_name = some_value

Person:
	LastName
	FirstName
	Address
	City

	Nilsen
	Fred
	Kirkegt 56
	Stavanger

	Rasmussen
	
	Storgt 67
	

Update one Column in a Row

We want to add a first name to the person with a last name of "Rasmussen":

	UPDATE Person SET FirstName = 'Nina'

WHERE LastName = 'Rasmussen'

Result:
	LastName
	FirstName
	Address
	City

	Nilsen
	Fred
	Kirkegt 56
	Stavanger

	Rasmussen
	Nina
	Storgt 67
	

Update several Columns in a Row

We want to change the address and add the name of the city:

	UPDATE Person

SET Address = 'Stien 12', City = 'Stavanger'

WHERE LastName = 'Rasmussen'

Result:
	LastName
	FirstName
	Address
	City

	Nilsen
	Fred
	Kirkegt 56
	Stavanger

	Rasmussen
	Nina
	Stien 12
	Stavanger

The DELETE Statement

The DELETE statement is used to delete rows in a table.

Syntax

	DELETE FROM table_name

WHERE column_name = some_value

Person:
	LastName
	FirstName
	Address
	City

	Nilsen
	Fred
	Kirkegt 56
	Stavanger

	Rasmussen
	Nina
	Stien 12
	Stavanger

Delete a Row

"Nina Rasmussen" is going to be deleted:

	DELETE FROM Person WHERE LastName = 'Rasmussen'

Result
	LastName
	FirstName
	Address
	City

	Nilsen
	Fred
	Kirkegt 56
	Stavanger

Delete All Rows

It is possible to delete all rows in a table without deleting the table. This means that the table structure, attributes, and indexes will be intact:

	DELETE FROM table_name

or

DELETE * FROM table_name

Sort the Rows

The ORDER BY clause is used to sort the rows.

Orders:
	Company
	OrderNumber

	Sega
	3412

	ABC Shop
	5678

	W3Schools
	2312

	W3Schools
	6798

Example

To display the company names in alphabetical order:

	SELECT Company, OrderNumber FROM Orders

ORDER BY Company

Result:
	Company
	OrderNumber

	ABC Shop
	5678

	Sega
	3412

	W3Schools
	6798

	W3Schools
	2312

Example

To display the company names in alphabetical order AND the OrderNumber in numerical order:

	SELECT Company, OrderNumber FROM Orders

ORDER BY Company, OrderNumber

Result:
	Company
	OrderNumber

	ABC Shop
	5678

	Sega
	3412

	W3Schools
	2312

	W3Schools
	6798

Example

To display the company names in reverse alphabetical order:

	SELECT Company, OrderNumber FROM Orders

ORDER BY Company DESC

Result:
	Company
	OrderNumber

	W3Schools
	6798

	W3Schools
	2312

	Sega
	3412

	ABC Shop
	5678

Example

To display the company names in reverse alphabetical order AND the OrderNumber in numerical order:

	SELECT Company, OrderNumber FROM Orders

ORDER BY Company DESC, OrderNumber ASC

Result:
	Company
	OrderNumber

	W3Schools
	2312

	W3Schools
	6798

	Sega
	3412

	ABC Shop
	5678

Notice that there are two equal company names (W3Schools) in the result above. The only time you will see the second column in ASC order would be when there are duplicated values in the first sort column, or a handful of nulls.

AND & OR

AND and OR join two or more conditions in a WHERE clause.

The AND operator displays a row if ALL conditions listed are true. The OR operator displays a row if ANY of the conditions listed are true.

Original Table (used in the examples)

	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Svendson
	Stephen
	Kaivn 18
	Sandnes

Example

Use AND to display each person with the first name equal to "Tove", and the last name equal to "Svendson":

	SELECT * FROM Persons

WHERE FirstName='Tove'

AND LastName='Svendson'

Result:
	LastName
	FirstName
	Address
	City

	Svendson
	Tove
	Borgvn 23
	Sandnes

Example

Use OR to display each person with the first name equal to "Tove", or the last name equal to "Svendson":

	SELECT * FROM Persons

WHERE firstname='Tove'

OR lastname='Svendson'

Result:
	LastName
	FirstName
	Address
	City

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Svendson
	Stephen
	Kaivn 18
	Sandnes

Example

You can also combine AND and OR (use parentheses to form complex expressions):

	SELECT * FROM Persons WHERE

(FirstName='Tove' OR FirstName='Stephen')

AND LastName='Svendson'

Result:
	LastName
	FirstName
	Address
	City

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Svendson
	Stephen
	Kaivn 18
	Sandnes

IN

The IN operator may be used if you know the exact value you want to return for at least one of the columns.

	SELECT column_name FROM table_name
WHERE column_name IN (value1,value2,..)

Original Table (used in the examples)

	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Nordmann
	Anna
	Neset 18
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

	Svendson
	Tove
	Borgvn 23
	Sandnes

Example 1

To display the persons with LastName equal to "Hansen" or "Pettersen", use the following SQL:

	SELECT * FROM Persons

WHERE LastName IN ('Hansen','Pettersen')

Result:
	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

BETWEEN ... AND

The BETWEEN ... AND operator selects a range of data between two values. These values can be numbers, text, or dates.

	SELECT column_name FROM table_name
WHERE column_name
BETWEEN value1 AND value2

Original Table (used in the examples)

	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Nordmann
	Anna
	Neset 18
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

	Svendson
	Tove
	Borgvn 23
	Sandnes

Example 1

To display the persons alphabetically between (and including) "Hansen" and exclusive "Pettersen", use the following SQL:

	SELECT * FROM Persons WHERE LastName

BETWEEN 'Hansen' AND 'Pettersen'

Result:
	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Nordmann
	Anna
	Neset 18
	Sandnes

IMPORTANT! The BETWEEN...AND operator is treated differently in different databases. With some databases a person with the LastName of "Hansen" or "Pettersen" will not be listed (BETWEEN..AND only selects fields that are between and excluding the test values). With some databases a person with the last name of "Hansen" or "Pettersen" will be listed (BETWEEN..AND selects fields that are between and including the test values). With other databases a person with the last name of "Hansen" will be listed, but "Pettersen" will not be listed (BETWEEN..AND selects fields between the test values, including the first test value and excluding the last test value). Therefore: Check how your database treats the BETWEEN....AND operator!

Example 2

To display the persons outside the range used in the previous example, use the NOT operator:

	SELECT * FROM Persons WHERE LastName

NOT BETWEEN 'Hansen' AND 'Pettersen'

Result:
	LastName
	FirstName
	Address
	City

	Pettersen
	Kari
	Storgt 20
	Stavanger

	Svendson
	Tove
	Borgvn 23
	Sandnes

Column Name Alias

The syntax is:

	SELECT column AS column_alias FROM table

Table Name Alias

The syntax is:

	SELECT column FROM table AS table_alias

Example: Using a Column Alias

This table (Persons):

	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

And this SQL:

	SELECT LastName AS Family, FirstName AS Name

FROM Persons

Returns this result:

	Family
	Name

	Hansen
	Ola

	Svendson
	Tove

	Pettersen
	Kari

Example: Using a Table Alias

This table (Persons):

	LastName
	FirstName
	Address
	City

	Hansen
	Ola
	Timoteivn 10
	Sandnes

	Svendson
	Tove
	Borgvn 23
	Sandnes

	Pettersen
	Kari
	Storgt 20
	Stavanger

And this SQL:

	SELECT LastName, FirstName

FROM Persons AS Employees

Returns this result:

Table Employees:

	LastName
	FirstName

	Hansen
	Ola

	Svendson
	Tove

	Pettersen
	Kari

Joins and Keys

Sometimes we have to select data from two or more tables to make our result complete. We have to perform a join.

Tables in a database can be related to each other with keys. A primary key is a column with a unique value for each row. Each primary key value must be unique within the table. The purpose is to bind data together, across tables, without repeating all of the data in every table.

In the "Employees" table below, the "Employee_ID" column is the primary key, meaning that no two rows can have the same Employee_ID. The Employee_ID distinguishes two persons even if they have the same name.

When you look at the example tables below, notice that:

· The "Employee_ID" column is the primary key of the "Employees" table

· The "Prod_ID" column is the primary key of the "Orders" table

· The "Employee_ID" column in the "Orders" table is used to refer to the persons in the "Employees" table without using their names

Employees:

	Employee_ID
	Name

	01
	Hansen, Ola

	02
	Svendson, Tove

	03
	Svendson, Stephen

	04
	Pettersen, Kari

Orders:
	Prod_ID
	Product
	Employee_ID

	234
	Printer
	01

	657
	Table
	03

	865
	Chair
	03

Referring to Two Tables

We can select data from two tables by referring to two tables, like this:

Example

Who has ordered a product, and what did they order?

	SELECT Employees.Name, Orders.Product

FROM Employees, Orders

WHERE Employees.Employee_ID=Orders.Employee_ID

Result
	Name
	Product

	Hansen, Ola
	Printer

	Svendson, Stephen
	Table

	Svendson, Stephen
	Chair

Example

Who ordered a printer?

	SELECT Employees.Name

FROM Employees, Orders

WHERE Employees.Employee_ID=Orders.Employee_ID

AND Orders.Product='Printer'

Result
	Name

	Hansen, Ola

Using Joins

OR we can select data from two tables with the JOIN keyword, like this:

Example INNER JOIN

Syntax
	SELECT field1, field2, field3

FROM first_table

INNER JOIN second_table

ON first_table.keyfield = second_table.foreign_keyfield

Who has ordered a product, and what did they order?

	SELECT Employees.Name, Orders.Product

FROM Employees

INNER JOIN Orders

ON Employees.Employee_ID=Orders.Employee_ID

The INNER JOIN returns all rows from both tables where there is a match. If there are rows in Employees that do not have matches in Orders, those rows will not be listed.

Result
	Name
	Product

	Hansen, Ola
	Printer

	Svendson, Stephen
	Table

	Svendson, Stephen
	Chair

Example LEFT JOIN

Syntax
	SELECT field1, field2, field3

FROM first_table

LEFT JOIN second_table

ON first_table.keyfield = second_table.foreign_keyfield

List all employees, and their orders - if any.

	SELECT Employees.Name, Orders.Product

FROM Employees

LEFT JOIN Orders

ON Employees.Employee_ID=Orders.Employee_ID

The LEFT JOIN returns all the rows from the first table (Employees), even if there are no matches in the second table (Orders). If there are rows in Employees that do not have matches in Orders, those rows also will be listed.

Result
	Name
	Product

	Hansen, Ola
	Printer

	Svendson, Tove
	

	Svendson, Stephen
	Table

	Svendson, Stephen
	Chair

	Pettersen, Kari
	

Example RIGHT JOIN

Syntax
	SELECT field1, field2, field3

FROM first_table

RIGHT JOIN second_table

ON first_table.keyfield = second_table.foreign_keyfield

List all orders, and who has ordered - if any.

	SELECT Employees.Name, Orders.Product

FROM Employees

RIGHT JOIN Orders

ON Employees.Employee_ID=Orders.Employee_ID

The RIGHT JOIN returns all the rows from the second table (Orders), even if there are no matches in the first table (Employees). If there had been any rows in Orders that did not have matches in Employees, those rows also would have been listed.

Result
	Name
	Product

	Hansen, Ola
	Printer

	Svendson, Stephen
	Table

	Svendson, Stephen
	Chair

Example

Who ordered a printer?

	SELECT Employees.Name

FROM Employees

INNER JOIN Orders

ON Employees.Employee_ID=Orders.Employee_ID

WHERE Orders.Product = 'Printer'

Result
	Name

	Hansen, Ola

UNION

The UNION command is used to select related information from two tables, much like the JOIN command. However, when using the UNION command all selected columns need to be of the same data type.

Note: With UNION, only distinct values are selected.

	SQL Statement 1

UNION

SQL Statement 2

Employees_Norway:

	E_ID
	E_Name

	01
	Hansen, Ola

	02
	Svendson, Tove

	03
	Svendson, Stephen

	04
	Pettersen, Kari

Employees_USA:

	E_ID
	E_Name

	01
	Turner, Sally

	02
	Kent, Clark

	03
	Svendson, Stephen

	04
	Scott, Stephen

Using the UNION Command

Example

List all different employee names in Norway and USA:

	SELECT E_Name FROM Employees_Norway

UNION

SELECT E_Name FROM Employees_USA

Result
	E_Name

	Hansen, Ola

	Svendson, Tove

	Svendson, Stephen

	Pettersen, Kari

	Turner, Sally

	Kent, Clark

	Scott, Stephen

Note: This command cannot be used to list all employees in Norway and USA. In the example above we have two employees with equal names, and only one of them is listed. The UNION command only selects distinct values.

UNION ALL

The UNION ALL command is equal to the UNION command, except that UNION ALL selects all values.

	SQL Statement 1

UNION ALL

SQL Statement 2

Using the UNION ALL Command

Example

List all employees in Norway and USA:

	SELECT E_Name FROM Employees_Norway

UNION ALL

SELECT E_Name FROM Employees_USA

Result
	E_Name

	Hansen, Ola

	Svendson, Tove

	Svendson, Stephen

	Pettersen, Kari

	Turner, Sally

	Kent, Clark

	Svendson, Stephen

	Scott, Stephen

Create a Database

To create a database:

	CREATE DATABASE database_name

Create a Table

To create a table in a database:

	CREATE TABLE table_name
(

column_name1 data_type,
column_name2 data_type,
.......
)

Example

This example demonstrates how you can create a table named "Person", with four columns. The column names will be "LastName", "FirstName", "Address", and "Age":

	CREATE TABLE Person

(

LastName varchar,

FirstName varchar,

Address varchar,

Age int

)

This example demonstrates how you can specify a maximum length for some columns:

	CREATE TABLE Person

(

LastName varchar(30),

FirstName varchar,

Address varchar,

Age int(3)

)

The data type specifies what type of data the column can hold. The table below contains the most common data types in SQL:

	Data Type
	Description

	integer(size)
int(size)
smallint(size)
tinyint(size)
	Hold integers only. The maximum number of digits are specified in parenthesis.

	decimal(size,d)
numeric(size,d)
	Hold numbers with fractions. The maximum number of digits are specified in "size". The maximum number of digits to the right of the decimal is specified in "d".

	char(size)
	Holds a fixed length string (can contain letters, numbers, and special characters). The fixed size is specified in parenthesis.

	varchar(size)
	Holds a variable length string (can contain letters, numbers, and special characters). The maximum size is specified in parenthesis.

	date(yyyymmdd)
	Holds a date

Create Index

Indices are created in an existing table to locate rows more quickly and efficiently. It is possible to create an index on one or more columns of a table, and each index is given a name. The users cannot see the indexes, they are just used to speed up queries.

Note: Updating a table containing indexes takes more time than updating a table without, this is because the indexes also need an update. So, it is a good idea to create indexes only on columns that are often used for a search.

A Unique Index
Creates a unique index on a table. A unique index means that two rows cannot have the same index value.

	CREATE UNIQUE INDEX index_name

ON table_name (column_name)

The "column_name" specifies the column you want indexed.

A Simple Index
Creates a simple index on a table. When the UNIQUE keyword is omitted, duplicate values are allowed.

	CREATE INDEX index_name

ON table_name (column_name)

The "column_name" specifies the column you want indexed.

Example

This example creates a simple index, named "PersonIndex", on the LastName field of the Person table:

	CREATE INDEX PersonIndex

ON Person (LastName)

If you want to index the values in a column in descending order, you can add the reserved word DESC after the column name:

	CREATE INDEX PersonIndex

ON Person (LastName DESC)

If you want to index more than one column you can list the column names within the parentheses, separated by commas:

	CREATE INDEX PersonIndex

ON Person (LastName, FirstName)

Drop Index

You can delete an existing index in a table with the DROP INDEX statement.

Syntax for Microsoft SQLJet (and Microsoft Access):

	DROP INDEX index_name ON table_name

Syntax for MS SQL Server:

	DROP INDEX table_name.index_name

Syntax for IBM DB2 and Oracle:

	DROP INDEX index_name

Syntax for MySQL:

	ALTER TABLE table_name DROP INDEX index_name

Delete a Table or Database

To delete a table (the table structure, attributes, and indexes will also be deleted):

	DROP TABLE table_name

To delete a database:

	DROP DATABASE database_name

Truncate a Table

What if we only want to get rid of the data inside a table, and not the table itself? Use the TRUNCATE TABLE command (deletes only the data inside the table):

	TRUNCATE TABLE table_name

ALTER TABLE

The ALTER TABLE statement is used to add or drop columns in an existing table.

	ALTER TABLE table_name
ADD column_name datatype

ALTER TABLE table_name
DROP COLUMN column_name

Note: Some database systems don't allow the dropping of a column in a database table (DROP COLUMN column_name).

Person:
	LastName
	FirstName
	Address

	Pettersen
	Kari
	Storgt 20

Example

To add a column named "City" in the "Person" table:

	ALTER TABLE Person ADD City varchar(30)

Result:
	LastName
	FirstName
	Address
	City

	Pettersen
	Kari
	Storgt 20
	

Example

To drop the "Address" column in the "Person" table:

	ALTER TABLE Person DROP COLUMN Address

Result:
	LastName
	FirstName
	City

	Pettersen
	Kari
	

SQL has a lot of built-in functions for counting and calculations.

Function Syntax

The syntax for built-in SQL functions is:

	SELECT function(column) FROM table

Types of Functions

There are several basic types and categories of functions in SQL. The basic types of functions are:

· Aggregate Functions

· Scalar functions

Aggregate functions

Aggregate functions operate against a collection of values, but return a single value.

Note: If used among many other expressions in the item list of a SELECT statement, the SELECT must have a GROUP BY clause!!

"Persons" table (used in most examples)

	Name
	Age

	Hansen, Ola
	34

	Svendson, Tove
	45

	Pettersen, Kari
	19

Aggregate functions in MS Access

	Function
	Description

	AVG(column)
	Returns the average value of a column

	COUNT(column)
	Returns the number of rows (without a NULL value) of a column

	COUNT(*)
	Returns the number of selected rows

	FIRST(column)
	Returns the value of the first record in a specified field

	LAST(column)
	Returns the value of the last record in a specified field

	MAX(column)
	Returns the highest value of a column

	MIN(column)
	Returns the lowest value of a column

	STDEV(column)
	

	STDEVP(column)
	

	SUM(column)
	Returns the total sum of a column

	VAR(column)
	

	VARP(column)
	

Aggregate functions in SQL Server

	Function
	Description

	AVG(column)
	Returns the average value of a column

	BINARY_CHECKSUM
	

	CHECKSUM
	

	CHECKSUM_AGG
	

	COUNT(column)
	Returns the number of rows (without a NULL value) of a column

	COUNT(*)
	Returns the number of selected rows

	COUNT(DISTINCT column)
	Returns the number of distinct results

	FIRST(column)
	Returns the value of the first record in a specified field (not supported in SQLServer2K)

	LAST(column)
	Returns the value of the last record in a specified field (not supported in SQLServer2K)

	MAX(column)
	Returns the highest value of a column

	MIN(column)
	Returns the lowest value of a column

	STDEV(column)
	

	STDEVP(column)
	

	SUM(column)
	Returns the total sum of a column

	VAR(column)
	

	VARP(column)
	

Scalar functions

Scalar functions operate against a single value, and return a single value based on the input value.

Useful Scalar Functions in MS Access

	Function
	Description

	UCASE(c)
	Converts a field to upper case

	LCASE(c)
	Converts a field to lower case

	MID(c,start[,end])
	Extract characters from a text field

	LEN(c)
	Returns the length of a text field

	INSTR(c,char)
	Returns the numeric position of a named character within a text field

	LEFT(c,number_of_char)
	Return the left part of a text field requested

	RIGHT(c,number_of_char)
	Return the right part of a text field requested

	ROUND(c,decimals)
	Rounds a numeric field to the number of decimals specified

	MOD(x,y)
	Returns the remainder of a division operation

	NOW()
	Returns the current system date

	FORMAT(c,format)
	Changes the way a field is displayed

	DATEDIFF(d,date1,date2)
	Used to perform date calculations

GROUP BY...

GROUP BY... was added to SQL because aggregate functions (like SUM) return the aggregate of all column values every time they are called, and without the GROUP BY function it was impossible to find the sum for each individual group of column values.

The syntax for the GROUP BY function is:

	SELECT column,SUM(column) FROM table GROUP BY column

GROUP BY Example

This "Sales" Table:

	Company
	Amount

	W3Schools
	5500

	IBM
	4500

	W3Schools
	7100

And This SQL:

	SELECT Company, SUM(Amount) FROM Sales

Returns this result:

	Company
	SUM(Amount)

	W3Schools
	17100

	IBM
	17100

	W3Schools
	17100

The above code is invalid because the column returned is not part of an aggregate. A GROUP BY clause will solve this problem:

	SELECT Company,SUM(Amount) FROM Sales

GROUP BY Company

Returns this result:

	Company
	SUM(Amount)

	W3Schools
	12600

	IBM
	4500

HAVING...

HAVING... was added to SQL because the WHERE keyword could not be used against aggregate functions (like SUM), and without HAVING... it would be impossible to test for result conditions.

The syntax for the HAVING function is:

	SELECT column,SUM(column) FROM table

GROUP BY column

HAVING SUM(column) condition value

This "Sales" Table:

	Company
	Amount

	W3Schools
	5500

	IBM
	4500

	W3Schools
	7100

This SQL:

	SELECT Company,SUM(Amount) FROM Sales

GROUP BY Company

HAVING SUM(Amount)>10000

Returns this result

	Company
	SUM(Amount)

	W3Schools
	12600

The SELECT INTO Statement

The SELECT INTO statement is most often used to create backup copies of tables or for archiving records.

Syntax

	SELECT column_name(s) INTO newtable [IN externaldatabase]

FROM source

Make a Backup Copy

The following example makes a backup copy of the "Persons" table:

	SELECT * INTO Persons_backup

FROM Persons

The IN clause can be used to copy tables into another database:

	SELECT Persons.* INTO Persons IN 'Backup.mdb'

FROM Persons

If you only want to copy a few fields, you can do so by listing them after the SELECT statement:

	SELECT LastName,FirstName INTO Persons_backup

FROM Persons

You can also add a WHERE clause. The following example creates a "Persons_backup" table with two columns (FirstName and LastName) by extracting the persons who lives in "Sandnes" from the "Persons" table:

	SELECT LastName,Firstname INTO Persons_backup

FROM Persons

WHERE City='Sandnes'

Selecting data from more than one table is also possible. The following example creates a new table "Empl_Ord_backup" that contains data from the two tables Employees and Orders:

	SELECT Employees.Name,Orders.Product

INTO Empl_Ord_backup

FROM Employees

INNER JOIN Orders

ON Employees.Employee_ID=Orders.Employee_ID

What is a View?

In SQL, a VIEW is a virtual table based on the result-set of a SELECT statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real tables in the database. You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if the data were coming from a single table.

Note: The database design and structure will NOT be affected by the functions, where, or join statements in a view.

Syntax

	CREATE VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

Note: The database does not store the view data! The database engine recreates the data, using the view's SELECT statement, every time a user queries a view.

Using Views

A view could be used from inside a query, a stored procedure, or from inside another view. By adding functions, joins, etc., to a view, it allows you to present exactly the data you want to the user.

The sample database Northwind has some views installed by default. The view "Current Product List" lists all active products (products that are not discontinued) from the Products table. The view is created with the following SQL:

	CREATE VIEW [Current Product List] AS

SELECT ProductID,ProductName

FROM Products

WHERE Discontinued=No

We can query the view above as follows:

	SELECT * FROM [Current Product List]

Another view from the Northwind sample database selects every product in the Products table that has a unit price that is higher than the average unit price:

	CREATE VIEW [Products Above Average Price] AS

SELECT ProductName,UnitPrice

FROM Products

WHERE UnitPrice>(SELECT AVG(UnitPrice) FROM Products)

We can query the view above as follows:

	SELECT * FROM [Products Above Average Price]

Another example view from the Northwind database calculates the total sale for each category in 1997. Note that this view selects its data from another view called "Product Sales for 1997":

	CREATE VIEW [Category Sales For 1997] AS

SELECT DISTINCT CategoryName,Sum(ProductSales) AS CategorySales

FROM [Product Sales for 1997]

GROUP BY CategoryName

We can query the view above as follows:

	SELECT * FROM [Category Sales For 1997]

We can also add a condition to the query. Now we want to see the total sale only for the category "Beverages":

	SELECT * FROM [Category Sales For 1997]

WHERE CategoryName='Beverages'

