
Models and Tools 23/08/2002

Software Engineering Process - with the UPEDU, © 2003 Chapter 3-1

Learning software process with UPEDU Slide 3-1 2000 École Polytechnique de Montréal & Rational Software

Models and Tools Models and Tools -- OutlinesOutlinesModels and Tools Models and Tools -- OutlinesOutlines

�� Justifying the needs for models and toolsJustifying the needs for models and tools

� Most engineering projects rely on modeling techniques and dedicated tools to facilitate
project development. UML is a modeling language specifically designed to facilitate
modeling of a software system without reference to the implementation approaches.
The efficiency of a software process is associated with the use of Computer-Assisted
Software Engineering (CASE) tools.

�� Defining the modeling conceptsDefining the modeling concepts

�� Eliciting modeling diagramsEliciting modeling diagrams

�� Finding the right Finding the right CASE Tools CASE Tools

Learning software process with UPEDU Slide 3-2 2000 École Polytechnique de Montréal & Rational Software

Successful Software Process IngredientsSuccessful Software Process Ingredients

UPEDU: Best Practice: Model Visually

Modeling
Language

Team-Based
Development

Tools

Learning software process with UPEDU Slide 3-3 2000 École Polytechnique de Montréal & Rational Software

UML Provides Standardized DiagramsUML Provides Standardized DiagramsUML Provides Standardized DiagramsUML Provides Standardized Diagrams

Deployment
Diagram

Use Case
DiagramsUse Case

DiagramsUse Case
Diagrams

Scenario
DiagramsScenario

DiagramsSequence
Diagrams

State
DiagramsState

DiagramsState
Diagrams

Component
DiagramsComponent

DiagramsComponent
Diagrams

Model

State
DiagramsState

DiagramsObject
Diagrams

Scenario
DiagramsScenario

DiagramsCollaboration
Diagrams

Use Case
DiagramsUse Case

DiagramsActivity
Diagrams

State
DiagramsState

DiagramsClass
Diagrams

Learning software process with UPEDU Slide 3-4 2000 École Polytechnique de Montréal & Rational Software

Joint Effort by Various IndividualsJoint Effort by Various Individuals

Fusion

Operation descriptions,
Message numbering

Meyer

Before and after
conditions

Harel

State charts

Wirfs-Brock

Responsibilities

Embley

Singleton classes,
High-level view

Odell

Classification

Shlaer - Mellor

Object Lifecycles

Gamma, et.al

Frameworks, patterns,
notes

Booch
JacobsonRumbaugh

Models and Tools 23/08/2002

Software Engineering Process - with the UPEDU, © 2003 Chapter 3-2

Learning software process with UPEDU Slide 3-5 2000 École Polytechnique de Montréal & Rational Software

Models and Tools Models and Tools -- OutlineOutlineModels and Tools Models and Tools -- OutlineOutline

�� Justifying the needs for models and toolsJustifying the needs for models and tools

�� MModeling odeling CConceptsoncepts

� Actor

� Use-Case

� Classes

� Associations

� Components and Packages

�� Eliciting modeling diagramsEliciting modeling diagrams

�� Finding the right Finding the right CASE ToolsCASE Tools

Learning software process with UPEDU Slide 3-6 2000 École Polytechnique de Montréal & Rational Software

John
Acts as an Operator

Daniel
Acts as an Operator

Crates

Cans

Receipt

Bottles

Start

Difference between an actor and an individualDifference between an actor and an individualDifference between an actor and an individualDifference between an actor and an individual

Depot Staff

Depot Manager

David

David as
Warehouse Manager

David as
Warehouse Staff

Operator

Learning software process with UPEDU Slide 3-7 2000 École Polytechnique de Montréal & Rational Software

Is the Answering Machine an Is the Answering Machine an
actor or part of the system?actor or part of the system?

Modelers establish the boundariesModelers establish the boundaries

Caller

System boundary?

Simple Phone
System

Answering
Machine

(voice mail)

Callee

An actor exchanges information with the system:
• giving information
• receiving information

An actor is NOT
part of the system

An actor could be:
• a human,
• a machine or
• another system

Learning software process with UPEDU Slide 3-8 2000 École Polytechnique de Montréal & Rational Software

Use-Case Model

Actor Use Case

Use case is Initiated by an ActorUse case is Initiated by an ActorUse case is Initiated by an ActorUse case is Initiated by an Actor

A use case is a sequence of
actions a system performs that
yields an observable result of
value to a particular actor

A use case models a dialogue
between actors and the system

A use case is a complete and
meaningful flow of events

Taken together, all use cases
constitute all possible ways of
using the system

Models and Tools 23/08/2002

Software Engineering Process - with the UPEDU, © 2003 Chapter 3-3

Learning software process with UPEDU Slide 3-9 2000 École Polytechnique de Montréal & Rational Software

Professor

name
empID

create()
save()
delete()
change()

Notation for declaring Classes Notation for declaring Classes Notation for declaring Classes Notation for declaring Classes
�� A class is comprised of three sectionsA class is comprised of three sections

� Class name, Structure (attributes), behavior (operations)

�� An entity class models longAn entity class models long--lived (persistent) associations and informationlived (persistent) associations and information

� Real-life phenomenon, Internal tasks of the system, values of its attributes are
often provided by an actor

�� A boundary class models communication between the system and its A boundary class models communication between the system and its
surroundingssurroundings

� Windows (user interface), Communication protocol (system interface)

�� A control class models control behavior specific to one or more use casesA control class models control behavior specific to one or more use cases

� Creates, initializes, deletes,sequence, coordinates execution of controlled
objects

Learning software process with UPEDU Slide 3-10 2000 École Polytechnique de Montréal & Rational Software

Grade

Schedule CourseOffering

0..40..*

primaryCourses

value : String

alternateCourses

0..20..*

0..*

0..*

Pre-Requisite

Associations Represent Structural RelationshipsAssociations Represent Structural RelationshipsAssociations Represent Structural RelationshipsAssociations Represent Structural Relationships

Association name

Role Name

Multiplicity
Many *
Exactly one 1
Zero or more 0..*
One or more 1..*
Zero or one 0..1
Specified range 2..4

Navigability

Self-associationAssociation class
Class

Learning software process with UPEDU Slide 3-11 2000 École Polytechnique de Montréal & Rational Software

Components and PackagesComponents and PackagesComponents and PackagesComponents and Packages

System RegistrationSystem Registration

Main Packages

MFC

Registration
Interface

Registration
Processing

University
Artifacts

Database
Access

Oracle

Business

Application

Middleware

UniversityArtifact
s
Main Component

Catalog

Course

Course
Section

Registration
Manager

Registration
Interface

Registration

Course
Catalog

Course
Roster

UPEDU Guideline: Generalization
Learning software process with UPEDU Slide 3-12 2000 École Polytechnique de Montréal & Rational Software

Models and Tools Models and Tools -- OutlineOutlineModels and Tools Models and Tools -- OutlineOutline

�� Justifying the needs for models and toolsJustifying the needs for models and tools

�� Defining the modeling conceptsDefining the modeling concepts

�� Eliciting modeling diagramsEliciting modeling diagrams

� Use Case Diagram

� Class Diagram

� Component Diagram

� Sequence diagram

� Collaboration diagram

� State diagram

�� Finding the right Finding the right CASE Tools CASE Tools

Models and Tools 23/08/2002

Software Engineering Process - with the UPEDU, © 2003 Chapter 3-4

Learning software process with UPEDU Slide 3-13 2000 École Polytechnique de Montréal & Rational Software

Build Visual Models Build Visual Models Build Visual Models Build Visual Models

Actor A

Use Case 1

Use Case 2

Actor B

user : »ç¿ëÀÚ

mainWnd : MainWnd

f ileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByName ()

L1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

GrpFile

read()
open()
create()
fi llFile()

rep

Repository

name : char * = 0

readD oc()
readFile()

(fr om Persistence)

F ileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
cr eate()
fil lDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fil l the
code..

U I

MFC

R ogueW av e

global

D oc umentApp

Pers is tenc e

Document

FileManager

GraphicFile
File

Repository DocumentList

FileList

user
mainWnd fileMgr :

FileMgr
repositorydocument :

Document
gFile

1 : Do c v i e w re q u e s t ()

2 : fe tc h Do c ()

3 : c re a te ()

4 : c re a te ()

5 : re a d Do c ()

6 : f i l l Do c u m e n t ()

7 : re a d F i l e ()

8 : f i l l F i l e ()

9 : s o rtBy Na m e ()

Æ ¯ Á¤ ¹®¼ -¿ ¡ ´ë ÇÑ º¸± â ¸¦
» ç ¿ ë ÀÚ°¡ ¿ ä Ã» ÇÑ´Ù.

È-ÀÏ°ü ¸®ÀÚ´Â ÀÐ¾ î¿ Â
¹®¼ -ÀÇ Á¤ º¸¸¦ ÇØ´ç ¹®¼ -
°́ Ã¼ ¿ ¡ ¼ ³Á¤ À» ¿ ä Ã» ÇÑ´Ù.

È-¸é °́ Ã¼ ´Â ÀÐ¾ îµ é ÀÎ
°́ Ã¼ µ é ¿ ¡ ´ë ÇØ ÀÌ ¸§ º°· Î
Á¤ ·ÄÀ» ½ ÃÄÑ È-¸é ¿ ¡
º¸¿ ©ÁØ´Ù.

Customer
name
addr

withdraw()
fetch()
send()

receive()

<<entity>>

Forward Engineering (Code Generation)
and

Reverse Engineering

Executable System

Openning

Writing

Reading
Clos ing

add file [numberOffile==MAX] /
flag OFF

add file

c lose file

c lose file

Use Case 3

Source Code edit, compile, debug, link

Use-Case Diagram Class Diagram

Collaboration Diagram

Sequence Diagram

Component
Diagram

State Diagram

Package
Diagram

Class

UPEDU Concept: Modeling Large Organization
Learning software process with UPEDU Slide 3-14 2000 École Polytechnique de Montréal & Rational Software

Student

Billing System

Register for
Courses

Request
Course Roster

Select
Courses to Teach

Professor

Maintain
Student Info

Maintain
Professor Info

Maintain
Course Info

Generate
Catalogue

Registrar

Use Case Diagram Use Case Diagram Use Case Diagram Use Case Diagram

Learning software process with UPEDU Slide 3-15 2000 École Polytechnique de Montréal & Rational Software

Class Diagram Class Diagram Class Diagram Class Diagram

MaintainScheduleForm

+ // open()
+ // select 4 primary and 2 alternate offerings()

<<boundary>>

0..1

CourseCatalogSystem

// get course offerings()

<<boundary>>
1 0..*

1

RegistrationController

// add courses to schedule()
// get course offerings ()

<<control>>

1

Schedule

// create with offerings()

<<entity>>

1
0..1

MainForm

// select maintain schedule()

<<boundary>>

11

Learning software process with UPEDU Slide 3-16 2000 École Polytechnique de Montréal & Rational Software

Component DiagramComponent Diagram

Client type 1

Server
.exe

.exe

.dll.dat

Models and Tools 23/08/2002

Software Engineering Process - with the UPEDU, © 2003 Chapter 3-5

Learning software process with UPEDU Slide 3-17 2000 École Polytechnique de Montréal & Rational Software

:registration
form

1: enter id

2: validate id

3: enter current semester

4: create new schedule
5: display

Sequence DiagramSequence DiagramSequence DiagramSequence Diagram

:schedule
form

:available
courses

6: get courses

John:
student

Lifeline

Message Reflexive message

Learning software process with UPEDU Slide 3-18 2000 École Polytechnique de Montréal & Rational Software

John : Student

registration form

schedule formavailable classes

1: enter id

2: validate id

3: enter current semester

4: create new schedule 5: display

6: get courses

Collaboration DiagramCollaboration DiagramCollaboration DiagramCollaboration Diagram

Learning software process with UPEDU Slide 3-19 2000 École Polytechnique de Montréal & Rational Software

Initialize Register

Unassigned

do: Assign professor to course

Open

Unassigned

do: Assign professor to course

Open

ClosedCanceled

RegistrationComplete

do: Generate class roster

Add student / numStudents = 0

[numStudents = 10]

cancelCourse

registration closed
[numStudents > = 3]

registration closed
[numStudents < 3]

addStudent

do: Report course is closed

State Transition DiagramState Transition DiagramState Transition DiagramState Transition Diagram

entry: Register a student

Learning software process with UPEDU Slide 3-20 2000 École Polytechnique de Montréal & Rational Software

Models and Tools Models and Tools -- OutlineOutlineModels and Tools Models and Tools -- OutlineOutline

�� Justifying the needs for models and toolsJustifying the needs for models and tools

�� Defining the modeling conceptsDefining the modeling concepts

�� Eliciting modeling diagramsEliciting modeling diagrams

�� Finding the right Finding the right CASE toolsCASE tools

� Software Development Tools

� Tool Support

� Reducing Risk

UPEDU Concept: Supporting Tools

Models and Tools 23/08/2002

Software Engineering Process - with the UPEDU, © 2003 Chapter 3-6

Learning software process with UPEDU Slide 3-21 2000 École Polytechnique de Montréal & Rational Software

Development Tools

Many Tools are RequiredMany Tools are RequiredMany Tools are RequiredMany Tools are Required

All
Requirements

Use Cases Scenarios

Test
Requirements

Test
Procedures

Test Results

What do I What do I
test?test?

Enough Enough
tests?tests?

Requirements Requirements
met?met?

High-
level

Detailed

Definitions

Components

ALERTREPORT

Control change

Model visually

Test

Manage requirement

Support development

